Convergence of High Order Finite Volume Weighted Essentially Nonoscillatory Scheme and Discontinuous Galerkin Method for Nonconvex Conservation Laws
نویسندگان
چکیده
In this paper, we consider the issue of convergence toward entropy solutions for high order finite volume weighted essentially non-oscillatory (WENO) scheme and discontinuous Galerkin (DG) finite element method approximating scalar nonconvex conservation laws. Although such high order nonlinearly stable schemes can usually converge to entropy solutions of convex conservation laws, convergence may fail for certain nonconvex conservation laws. We perform a detailed study to demonstrate such convergence issues for a few representative examples, and suggest a modification of the high order schemes based either on first order monotone schemes or a second order entropic projection [1] to achieve convergence toward entropy solutions while maintaining high order accuracy in smooth regions.
منابع مشابه
Runge-Kutta discontinuous Galerkin method using WENO limiters II: Unstructured meshes
In [20], Qiu and Shu investigated using weighted essentially non-oscillatory (WENO) finite volume methodology as limiters for the Runge-Kutta discontinuous Galerkin (RKDG) methods for solving nonlinear hyperbolic conservation law systems on structured meshes. In this continuation paper, we extend the method to solve two dimensional problems on unstructured meshes, with the goal of obtaining a r...
متن کاملOn maximum-principle-satisfying high order schemes for scalar conservation laws
We construct uniformly high order accurate schemes satisfying a strict maximum principle for scalar conservation laws. A general framework (for arbitrary order of accuracy) is established to construct a limiter for finite volume schemes (e.g. essentially non-oscillatory (ENO) or weighted ENO (WENO) schemes) or discontinuous Galerkin (DG) method with first order Euler forward time discretization...
متن کاملFinite Volume HWENO Schemes for Nonconvex Conservation Laws
Following the previous work of Qiu and Shu [SIAM J. Sci. Comput., 31 (2008), 584-607], we investigate the performance of Hermite weighted essentially non-oscillatory (HWENO) scheme for nonconvex conservation laws. Similar to many other high order methods, we show that the finite volume HWENO scheme performs poorly for some nonconvex conservation laws. We modify the scheme around the nonconvex r...
متن کاملMaximum-principle-satisfying High Order Finite Volume Weighted Essentially Nonoscillatory Schemes for Convection-diffusion Equations
To easily generalize the maximum-principle-satisfying schemes for scalar conservation laws in [X. Zhang and C.-W. Shu, J. Comput. Phys., 229 (2010), pp. 3091–3120] to convection diffusion equations, we propose a nonconventional high order finite volume weighted essentially nonoscillatory (WENO) scheme which can be proved maximum-principle-satisfying. Two-dimensional extensions are straightforwa...
متن کاملFinal Report of NASA Langley Grant NCC1-01035 Relaxation and Preconditioning for High Order Discontinuous Galerkin Methods with Applications to Aeroacoustics and High Speed Flows
methods are two classes of high order, high resolution methods suitable for convection dominated simulations with possible discontinuous or sharp gradient solutions. In [18], we first review these two classes of methods, pointing out their similarities and differences in algorithm formulation, theoretical properties, implementation issues, applicability, and relative advantages. We then present...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Scientific Computing
دوره 31 شماره
صفحات -
تاریخ انتشار 2008